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The usage and characteristics of large systems or systems of systems can challenge many current
development assumptions. Vulnerability analysis has typically concentrated on vulnerabilities induced
by errors in coding or in the interfaces among components. System interactions can also be a seedbed for
vulnerabilities, however. This article describes software assurance challenges inherent in networked systems
development and proposes a structured approach to analyzing potential system stresses using scenarios.

Introduction
The following quote from Trust in Cyberspace notes the difficulty for solving some of the integration

problems associated with deploying networked information systems (NISs) [Schneider 993]:

NISs pose new challenges for integration because of their distributed nature and the uncontrollability
of most large networks. Thus, testing subsets of a system cannot adequately establish confidence in
an entire NIS, especially when some of the subsystems are uncontrollable or unobservable, as is likely
in an NIS that has evolved to encompass legacy software. In addition, NISs are generally developed
and deployed incrementally. Techniques to compose subsystems in ways that contribute directly to
trustworthiness are, therefore, needed.

The theme for the 2007 International Conference on COTS-Based Software Systems (ICCBSS) was
“Systems’ Composition and Interoperability – A World in Transition.” The title of Steve Esterbrook’s
2007 keynote address was “Scale Changes Everything: Understanding the Requirements for Systems of
Systems.” The scale that may be encountered in new systems can fundamentally change how system security
is addressed in system development.

Systems vulnerability analysis can require different techniques than those used to analyze source code and
components for vulnerabilities. Vulnerabilities can result from unanticipated interactions among systems or
among systems, users, and system operators. A successful attack on a system can indirectly affect systems
that exchange information with the exploited system and particularly those that assume a trusted relationship
with that system.

These and other scale issues in system development are explored below in the following sections:

• Divide and Conquer - Software and Systems Engineering. The expanded system scale that we can
achieve with software integration also challenges the historical separation of systems and software
engineering. Software issues that arise if we maintain that separation are discussed this section.

• System Characteristics. The usage and characteristics of large systems or systems of systems raises
analysis issues that may not be addressed by existing techniques.

• Effects of Scale on Security. The integration of systems of systems, as well as technologies such as
web services, change some of the design assumptions for security.

• Failure Analysis: What Can Go Wrong. Four types of system integration errors are described.

• Failure Analysis: System Behavior. Systems interaction failures are a source of security
vulnerabilities. Usage and system integration influences the failures that should be considered.

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/208-BSI.html (Ellison, Robert J.)
2. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/887-BSI.html (Woody, Carol)
3. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_schneider99 (System

Strategies References)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/208-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/887-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_schneider99


Scale: System Development Challenges 2
ID: 882-BSI | Version: 10 | Date: 5/16/08 2:39:02 PM

• An Approach to Failure Analysis and Management. The 2003 failure of the National Power Grid
is used as an example of how failures in software systems are increasingly a result of a combination of
user, software, and system management errors.

• Systems: Consolidating Aspects of Security with General Failure Management. A successful cyber
attack on a system can generate faults for other systems. Those systems with the secondary failures
typically do not have knowledge of the actual cause and have to apply general mitigation tactics.

• Failure Analysis Using Scenarios. The use of scenarios provides a structured approach for analyzing
potential system stresses.

• Concluding Observations. Continual monitoring and analysis of system behavior are essential.

Divide and Conquer - Software and Systems Engineering
The earlier quote from Trust in Cyberspace noted the need for techniques to compose subsystems in ways
that contribute directly to trustworthiness. We build a large system by first decomposing it into pieces that
are more easily managed. The challenge is to decompose the system in such a way that those individual
pieces can be individually implemented and that the composition of those components meets system
requirements.

The decomposition is often constrained by a need to integrate legacy systems, a requirement to use
a commercially available component, or a desire to reduce costs by reusing available components.
Decomposition can be even more difficult if we have too many cooks in the kitchen. For large systems the
systems and software engineers are both decomposing large components to better manage development,
and it is not unusual to find that both groups have to work around decompositions initiated by the other
group. The early decompositions that often have to be done with only limited system understanding can
create problems later in the development cycle when the detailed interactions among components are better
understood.

The separation of systems and software engineering is historical. Boehm notes several trends that caused
systems engineering and software engineering to initially evolve as largely sequential and independent

processes [Boehm 064]. Systems engineering began as a discipline for determining how best to configure
various hardware components into physical systems such as ships, railroads, and defense systems. The
objective of systems engineering was to create a sequence of independent tasks to produce the components
that would be assembled into the system. Early software engineering drew on a highly formal and
mathematical approach to specifying software components. The software and systems engineering worlds
co-existed as separate entities. As software became a system component, the systems engineer added
additional independent tasks for the software components. The software engineer was not involved in the
analysis or allocation of the system requirements.

As systems become increasingly software intensive, there is an increasing need to integrate the two
disciplines. Systems of systems can be a mix of software and hardware systems. The electric power grid

as described in [US-Canada 045] is such an example, but systems of systems are increasingly a software
creation. Networking and distributed system integration techniques such as web services make it much easier
to compose systems. Boehm has an extensive discussion of future trends and their impact on systems and

software engineering [Boehm 066]. Maier’s paper includes a number of examples of the development issues

that might arise when the software and systems engineering activities are not well integrated [Maier 067].
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A systems engineer might describe a software interface between systems components in terms of the data
being exchanged and the communications protocol used. The software engineer concentrates on the behavior
of the data flow. How is the data flow controlled? Is it synchronous or asynchronous? Do we have data push
or data pull? If we have data push, does the data arrive at regular scheduled times or at irregular times with
varying volumes? Those differences can lead to significantly different software architectures.

Maier also discusses other differences in how systems engineering and software engineering are currently
practiced. Canonical systems engineering has a flavor of the waterfall development model. The functional
and often performance considerations lead to a top-down decomposition of a complex system into
subsystems and eventually decompose subsystems into hardware and software components. Ideally each
step is completed before proceeding to the next one. Maier observes that the idealized system decomposition
process breaks down when it confronts reality. While the system has to deal with both hardware and
software, the software costs can account for 80% or more of the total development and integration budget.
Software development increasingly uses an incremental development model, which may postpone some
development decisions that a systems engineer would have made earlier in the design.

System Characteristics
A system of systems (SoS) is a good example of the problems noted in the Trust in Cyberspace quote in the
opening paragraph. The set of characteristics that distinguish an SoS from a large monolithic system are

• operational independence of the elements: Component systems are independently useful.

• managerial independence of the elements: Component systems are acquired and operated
independently; they maintain their existence independent of the SoS.

• evolutionary development: The SoS is not created fully formed but comes into existence gradually as
usages are refined, new usages developed, and old usages phased out.

• emergent behavior: Behaviors of the SoS are not localized to any component system. The principal
purposes of the SoS are fulfilled by these system behaviors rather than component behaviors.

• geographic distribution: Components are so geographically distributed that their interactions are

limited primarily to information exchange rather than exchanges of mass or energy [Maier 988].

The SEI considered the affects of the characteristics of an ultra-large system (ULS) on development [SEI

069]. Many of those characteristics are applicable to systems that we are building today:

• continuous evolution and deployment: There will be an increasing need to integrate new capabilities
into a system while it is operating. New and different capabilities will be deployed, and unused
capabilities will be dropped; the system will be evolving not in phases, but continuously.

• heterogeneous, inconsistent, and changing elements: A system will not be constructed from uniform
parts: there will be some misfits, especially as the system is extended and repaired.

• erosion of the people/system boundary: People will not just be users of a system; they will be
elements of the system, affecting its overall emergent behavior.

• normal failures: Software and hardware failures will be the norm rather than the exception.

The term ULS suggests a large system in terms of its “size” measured, for example, by the total lines of
source code. Easterbrook proposed in his ICCBSS keynote that ultra-large could also refer to the scale of
usage. Applications that support collaboration such as email, chat, or Word are not ultra-large in a “physical”
sense but can have ultra-large effects across an ultra-large population of users and organizations.

It is also valuable to be flexible in how we think of an SoS. A discussion over whether a specific system
satisfies Maier’s defining characteristics can evolve into a debate over interpretations of the characteristics
that cannot be resolved. While an SoS is defined in terms of five characteristics, it is productive to
consider how each characteristic affects development to explore at least qualitative measures for individual
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characteristics. For example, Maier distinguishes two kinds of administrative structures for an SoS [Maier

9810] that reflect how managerial or operational independence might be measured:

• directed: Directed systems are those in which the integrated system of systems is built and managed
to fulfill specific purposes. It is centrally managed during long-term operation to continue to fulfill
those purposes and any new ones the system owners may wish to address. The component systems
maintain an ability to operate independently, but their normal operational mode is subordinated to the
central managed purpose. For example, an integrated air defense network is usually centrally managed
to defend a region against enemy systems, although its component systems may operate independently.

• collaborative: Collaborative systems are distinct from directed systems in that the central management
organization does not have coercive power to run the system. The component systems must, more or
less, voluntarily collaborate to fulfill the agreed upon central purposes. The Internet is a collaborative
system. Agreements among the central players on service provision and rejection provide what
enforcement mechanism there is to maintain standards.

Even for a directed system, any existing legacy and COTS components, as well as distributed operations
procedures, can constrain the desired central controls that can be implemented.

As systems expand in scale, evolution is a factor that could be considered independently of the other SoS
characteristics because of the costs associated with replacing a large system.

Effects of Scale on Security
The increased deployment of distributed systems using technologies such as web services challenge some
of the assumptions used in the development of stand-alone systems. For a collaborative SoS as defined
by Maier, the designer should not expect to have full knowledge of the global system state and should not
expect either participating systems or the collaborative SoS to share common risk profiles. A user of a
collaborative SoS should have a caveat emptor perspective, particularly with respect to a security failure that
compromises any of the participating systems.

Unfortunately, a caveat emptor attitude may be also appropriate for a directed SoS or a complex non-SoS
system. As the scale increases, it may not be practical to maintain the global-state information, and the
capability to effectively analyze that global state diminishes more rapidly than the capability to gather
the information. With the continued dissolution of the organizational system boundary, the sources of
vulnerabilities, unexpected events, and changes in technology and usage are increasingly external and
beyond the immediate control of the organization. A response to an unexpected event now has to be
chosen with incomplete knowledge about the cause of the event and the corresponding global state, with
the increased likelihood of false positives and negatives for the necessity of an action. The complexity
raises the cost of controls for managing software errors. While we can have system reliability that is better
than the reliability of the individual hardware components, the necessary controls and redundancy have a
continuing cost. Component redundancy typically addresses hardware failures. The mitigation mechanisms
for external sources of software errors such as application proxies can be complex. The number of such
controls proliferates as a system usage expands.

A security risk analysis considers the risks associated with specific organizational usage. As we build
systems that can be adapted for changes in usage, we can significantly change the ordering of the risks and
the desired mitigation strategies for those risks. We likely would be wary about using a collaborative system
for a highly sensitive task, but many of the same issues can arise when usage changes in a centrally managed
system. Although the adaptable functionality of a system may enable the execution of a highly sensitive task,
the implementation of that functionality may have been designed for usage with limited security needs and
cannot meet the new security requirements. Legacy systems and frequently COTS components are a good
example of this situation.
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Design paradigms such as service-oriented architectures and technologies such as web services can change
software control assumptions that have been previously been used. The interface to a remote service is
frequently asynchronous so as to avoid either party from having to tie up resources waiting for a response.
The initiator of a web-services-based transaction wants to control future access to that data and may want
the source of any response to be authenticated. The organization that receives that transaction would want
to verify that the transaction was authorized. The web services security protocols support such distributed
control through mechanisms such as encryption, public and private keys, and signing. Security Assurance
Markup Language (SAML) enables the sharing of user authentication, entitlement, and attribute information.
The data as well as the rules for managing that data are described using XML. The security policy is now
attached to the data, and that policy is now interpreted by multiple control points.

Shared business services such as those proposed by a service-oriented architecture (SoA) can complicate
the tradeoffs among requirements that are made during development. General functional interoperability
is not sufficient. An SOA can encounter the same problem with a change in usage as was described for
a collaborative system. A shared service can be used in multiple contexts. A shared service may be the
common access point for an enterprise data set and in that role enforces the desired authentication and
authorization requirements. Initially the request for that service may have always come from a trusted
computing platform such as an enterprise-maintained desktop, but over time usage has changed to allow
access from a remote laptop or a PDA, which introduces new risks that were not considered by the initial
service design. As use of shared services expands, there is greater likelihood of mismatches in assumptions
among components. For example, a shared service whose response to an adverse event is a graceful
shutdown creates an event (the loss of that service) that may not be well tolerated by all systems that use the
provided service.

Failure Analysis: What Can Go Wrong
For large software projects it is not unusual to find that the reliability development activities have addressed
hardware failures. Hardware reliability improvement activities identify unexpected failure modes and the
stress points that are likely points of failure. Hardware reliability improves as these design defects are
mediated. Software reliability typically receives less effort. Software failures such as race conditions and
system deadlocks over the use of shared resources receive attention, but in general predicting and then
improving the reliability of a software design before it has been implemented is not a standard practice.
Software reliability efforts are more likely to focus on modeling defect trends identified via code reviews and
testing. Finally, the hardware and software reliability analysis each assumes that the reliability of the other
factor is 100%, and there is little consideration of the interaction of software with non-computer hardware or
with operations.

Part of the problem is that software errors can be difficult to identify. All software failures are deterministic
in the sense that they occur every time certain conditions are met. For most errors we can find a normal use
case that repeats the failure, but errors such as race conditions or memory leaks are much more difficult
to reproduce because they depend on non-deterministic timing and usage patterns and often appear to be
random. As we move from components to systems and systems of systems, the essential properties may
be emergent, that is, derived from the collective behavior of the components rather than from a single
component.

A failure in that emergent behavior can occur even though each component meets its specifications. Leveson
separates safety accidents into two types: those caused by failures of individual components and those
caused by dysfunctional interactions between non-failed components. In most software-related accidents,
the software operates exactly as specified, that is, the software, following its requirements, commands
component behavior that violates system safety constraints, or the software design contributes to unsafe
behavior by human operators (i.e., system-level analysis identifies multiple contributing factors rather than a

single failure) [Leveson 0511].
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Failure analysis associated with malicious events has to deal with additional complexity.

• Hardware reliability analysis often assumes that multiple faults are independent. However, an attacker
can purposely inject multiple events, such as disabling both an essential service and the recovery
mechanisms.

• There is no measure for intentional acts equivalent to the mean-time-to-failure measure used for
hardware failures. While severe or catastrophic attacks can be speculated, the probabilities of such
events may be quite small and depend not so much on system attributes but on the likelihood of
personnel, political, or financial circumstances that would motivate a skilled attacker to act.

• Detecting a security fault can be more difficult than sensing a software fault. A skilled attacker may be
able to identify the security detection mechanisms employed and tailor the attack appropriately to avoid
detection. This punch and counter-punch response pattern exists now between those who write email
viruses and those who design the detection algorithms for email scanners. Detection may attempt to
identify abnormal behavior, but normal system usage evolves over time and requires continual changes
to the criteria.

As we deploy larger systems, the software development effort concentrates more on integrating existing
components or systems than on building new ones. The article Trustworthy Composition: The System

Is Not Always the Sum of Its Parts12 considered four software artifacts in the analysis of how software
vulnerabilities might be introduced as a system is assembled from its components.

1. Specific interface. An interface controls access to a service. Interfaces that fail to validate the input are
frequent members of published vulnerability lists.

2. Component-specific integration. Assembly problems often arise because of conflicts in the design
assumptions for the components. Project constraints may require using components, COTS software,
or legacy systems that were not designed for the operating environment, which raises the likelihood of
mismatches. The increasing importance of business integration requirements compounds the component
integration problems and is the motivation for designs based on SOA.

3. Architecture integration mechanisms. Commercial software tool vendors often provide the capability
for the purchaser to integrate the tool into their systems and tailor its functionality for their specific
needs. However, the capability to reconfigure a system rapidly is matched by the increased probability
of component inconsistencies generated by the more frequently changing component base, as well
as the increased risk that the dynamic integration mechanisms could be misused or exploited. These
mechanisms represent another interface that must be properly constrained.

4. System behavior: component interactions. The behavior of a system is not the simple sum of the
behavior of the individual components. System behavior is strongly influenced by the interactions of its
components. Components may individually meet all specifications, but when they are composed into
a system, the unanticipated feedback among components can lead to unacceptable system behavior.
Security and safety are system rather than component requirements. We can build a reliable system
out of unreliable components by appropriate use of redundancy. Components that are not secure as
standalone components in an operating environment may be secure when used within the constraints
maintained by a system.

A primary objective for the Build Security In web site is to reduce the number of vulnerabilities in a
system. Good progress has been made on some classes of vulnerabilities. Static analysis tools should reduce
the vulnerabilities introduced by poor software coding practices. The documentation of attack patterns
has identified vulnerabilities associated with specific interfaces and technologies. Tools exists that can
support the analysis for popular interfaces such as those associated with web development. Vulnerabilities
associated with architecture integration or extensibility such as web services and scripting require attention.
Vulnerabilities associated with system behavior are likely to be increasingly important with the deployment
of systems of systems, as well as with the use of shared services as in SOA. The following quote from Trust
in Cyberspace notes the importance of system interactions and the scarcity of effective analysis methods.
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System-level trustworthiness requirements are typically first characterized informally. The
transformation of these informal notions into precise requirements that can be imposed on individual
system components is difficult and often beyond the current state of the art. Whereas a large software
system such as an NIS cannot be developed defect-free, it is possible to improve the trustworthiness
of such a system by anticipating and targeting vulnerabilities. But to determine, analyze, and, most
importantly, prioritize these vulnerabilities, a good understanding is required for how subsystems
interact with each other and with the other elements of the larger system. Obtaining such an

understanding is not possible today [Schneider 9913].

Failure Analysis: System Behavior
Business demands increasingly lead to work processes that span multiple systems and, in some cases,
multiple organizations. Given the difficulty of that integration, it is not unusual to find that the initial
development focus is on simply getting the processes to work. The initial design is often driven by what are
often called “sunny day” scenarios, that is, scenarios that assume close to ideal operating conditions. Such
ideal conditions are rarely the norm for networked systems and are even less likely if the work processes
span multiple organizations.

The security professional can have two very different roles during development. One role involves the
design and development of security functionality that supports authorization, authentication, auditing,
and cryptology. The second role deals with identifying potential security vulnerabilities associated with
the design, development, usage, and management of the system. The use of a central data store creates an
attractive target for an attack. The use of particular communication protocols may require analysis to ensure
that best practices were followed.

The increased scale of business systems naturally leads to the need to scale up security services.
Business governance policies, as well as regulatory requirements such as Sarbanes-Oxley, have led to
the consolidation of authorization and authentication services across multiple computing platforms and
applications. The centralization of such security services reduces the likelihood of home-grown and error-
prone implementations, but those central services are also an inviting attack target. As single points of failure
for most enterprise systems, consolidated services need to meet high standards for security, fault tolerance,
and availability.

The system complexity associated with business integration requirements expands the spectrum of
development, user, and system management failures that security analysis has to consider. One way to
partition that effort is to consider two perspectives for the analysis of work processes that span multiple
systems:

• End-to-end perspective: How do we demonstrate the quality requirements for a multistep process?
Each system may have its own authorization and auditing requirements. Does the composition of the
functions associated with the individual systems satisfy the end-to-end security requirements for the
work process? For distributed systems, external visibility and controls may be limited or nonexistent.

• Service provider perspective: A multisystem work process can create usage patterns or risks that
were not anticipated in the design of a specific system. The system owner may have requirements for
the protection of the system assets that conflict with the desired usage. The evolution of usage that is
associated with an SoS implies that eventually abnormal behavior will occur.

Those two perspectives reflect the fact that distributed decision making across both physical and
organizational boundaries is a necessity for software-intensive, complex, human-machine systems. As work
processes extend beyond the corporate IT perimeter and incorporate services and data provided by external
systems, the concept of a perimeter becomes even more elusive. Frequently each interface must be monitored
to reflect the dynamically changing assurance associated with that link. Thus, the central control represented
by a firewall-protected perimeter has increasingly been replaced by multiple control points.
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Multiple systems are integrated to support a work process with the assumption that those systems are
trustworthy. By trustworthy, we mean that there is evidence that the systems have predictable behavior and
are free of vulnerabilities. But, for a number of reasons, predicting system behavior and identifying potential
vulnerabilities that could arise from component interactions are difficult for systems of any size and are more
difficult when integrating multiple systems:

• Risks may not be observed until deployment.

• Modeling cannot consider all the factors.

• The effects of a system change or failure are difficult to contain and with external
interdependencies may be unknown.

• An insignificant local change or error can be magnified by unexpected or poorly understood
interdependencies.

• The difficulty of predicting the behavior of an SoS is compounded by multiple and often autonomous
controls.

• The sheer number and diversity of software and hardware components limits the capability to
synchronize upgrades and deployments. Such synchronization is even less likely across multiple
organizations. Interoperability is often required with legacy components and components with
unapplied upgrades.

• There is reduced visibility of the state of the participants in an SoS. A successful exploit of a normally
trusted system may not be recognized by the other systems.

• Subsystems and software components are designed for specific usage in terms of performance,
reliability or security. With continuing changes in business usage, new business usage eventually will
generate system or component usage that falls outside the design parameters.

As an example of the last item, consider Figure 1, in which the ovals on the right side represent
geographically distributed systems and the blue and black lines are business processes that use those
systems. The right side of the figure expands one of those systems. For a military example, an oval might be
a specific Service system, whereas the work process might be joint activity that required coordination across
the Services. The specific Service system receives both joint and Service-specific requests. A joint Service
activity would likely generate a sequence of actions similar to the actions generated for a Service-specific
request.

Figure 1. System-of-systems resource contention
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An Approach to Failure Analysis and Management

Causation for Software Systems
The error analysis for a specific interface, for component-specific integration, or for architectural integration

mechanisms is often similar to what is called event-chaining in safety engineering [Leveson 0515]. The
assumption for almost all causal analysis for engineered systems today is a model of accidents that assumes
they result from a chain (or tree) of failure events and human errors. From an observed error, the analysis
backward-chains and eventually stops at an event that is designated as the cause. Usually a root cause
selected from the chain of events has one or more of the following characteristics: (1) it represents a type of
event that is familiar and thus easily acceptable as an explanation for the accident, (2) it is a deviation from a
standard, (3) it is the first event in the backward chain for which a “cure” is known, and (4) it is acceptable as

the identified cause [Leveson 0516].

Event-based models of accidents, with their relatively simple cause-effect links, were created in an era of
mechanical systems and then adapted for electro-mechanical systems. The use of software in engineered
systems has removed many of the physical constraints that limit complexity and has allowed engineers to
incorporate greatly increased complexity and coupling in systems containing large numbers of dynamically
interacting components. In the simpler systems of the past, where all the interactions between components
could be predicted and handled, component failure was the primary cause of accidents. In today’s complex
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Strategies References)

16. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_leveson05 (System
Strategies References)
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systems, made possible by the use of software, this is no longer the case. The same applies to security
and other system properties: While some vulnerabilities are associated only with a single component, a
more challenging class of vulnerability emerges in the interactions among multiple system components.
Vulnerabilities of this type are system vulnerabilities and are much more difficult to locate and predict

[Leveson 0517]. Leveson’s argument may be applicable to software assurance for complex systems. Attacker
tactics evolve in response to changes in defensive strategies, system usage, and technologies deployed, and
future tactics could exploit system interactions rather than just component vulnerabilities.

National Power Grid Failure in 2003
The 2003 Electric Power Grid blackout is a representative example of a system-of-systems failure. While
this example deals with reliability rather than security, much of the analysis is applicable to security because
both security and reliability must manage adverse events. While the failure was not the result of malicious
activity, it provides a good example of how errors in failure management could be exploited. The failure did
not have a single root cause but was the result of a combination of system, user, and operational errors. This
example also demonstrates how risk mitigation is often a combination of system, user, and operator actions.

On August 14, 2003, approximately 50 million electricity consumers in Canada and the northeastern U.S.
were subject to a cascading blackout, the largest in North America’s history. There was not a single cause
for this event. The final report by the U.S.-Canada Power System Outage Task Force identified a variety
of contributing factors including poor communications, human error, mechanical breakdowns, inadequate
training, software errors, poor performance for sophisticated computer modeling systems, and lack of
attention given to simple tree trimming. The details for this example are not that critical. Rather the example
demonstrates how the reliability of SoS can be affected by the interactions of computer systems, physical

systems, and human operations [US-Canada 0418].

The blackout was initiated when three high-voltage transmission lines operated by an Ohio utility short-
circuited and went out of service when they came into contact with trees that were too close to the lines. The
loss of the three lines resulted in too much electricity flowing onto other nearby lines, which caused those
lines to overload and then be automatically shut down.

The control system included four subsystems, one of which generated alarms based on the severity of events.
An operator has to monitor a significant amount of information—think in terms of having to browse through
multiple sheets in a spreadsheet with no search function—and an alarm would direct the operator’s attention
to a particular item.

The control system is used by a number of utilities, and a race condition arose for the first time, which
disabled the alarm subsystem. The alarm subsystem was replicated to mitigate hardware faults. The initial
failure corrupted the data stream so that the second server also failed on startup. The subsystems were
integrated in such a way that the alarm subsystem could be restored only by a cold restart of the full control
system, a thirty to sixty minute operation. The alarm subsystem failure did not interrupt the data feeds from
the power-grid sensors to the other system components. The control operators had access to all information,
but without the alarms they would have had to identify abnormal conditions manually.

The power-grid operators were not automatically notified by the control system of the failure of the alarm
subsystem. The initial symptoms of this failure were confusing, and IT operations did not immediately know
that the alarm subsystem had failed. IT operations delayed notifying the control operators of the failure and
did not appear to understand the operational impact of the alarm subsystem failure. The final report of power
system outage task force raised issues with operator training with respect to managing emergency conditions.
Hence, for a significant time, the power-grid operators were not aware of the loss of the three lines and hence
took no action, such as shedding load, which could have kept the problem from growing and becoming too
large to control.

17. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_leveson05 (System
Strategies References)

18. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_us-canada04 (System
Strategies References)
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A primary power grid monitoring tool is a state estimator, which takes measurements of quantities related to
the system state as input and provides an estimate of the system state as output. It is used to confirm that the
monitored electric power system is operating in a stable and reliable state by simulating the system both at
the present time and one step ahead for a particular network topology and loading condition. With the use of
a state estimator and its associated contingency analysis software, system operators can review each critical
contingency to determine whether each possible future state is within reliability limits. A state estimator
might run every five minutes. When the output from a state estimator is out of bounds (i.e., generates an
impossible state), it usually means that there is an inconsistency in the input. To correct that situation, the
state estimator is taken off-line and the input data verified.

There are independent monitoring facilities for the power grid. Midwest Independent System Operator
(MISO) coordinates power transmission in the affected region, and utilities exchange alerts on critical
failures. MISO uses a state estimator that runs every five minutes as one of the tools to monitor the grid.
On August 14, MISO state estimator produced output that was far outside the acceptable range. The failure
was caused because the status of an out-of-service line had not been updated for the state estimator. After
that state was corrected, MISO’s IT operations erred initially by forgetting to re-enable the automatic five
minute runs. When that operational error was observed and the five minute runs enabled, a second failure
occurred caused by invalid status information on another line. The state estimator finally came back on line
in an operational mode about two minutes before the unrecoverable cascade of failures started.

Observations

(These observations are those of the author and not of the task force that reviewed the blackout.)

The power failure shows the need to demonstrate assurance not just for a system but also for business
operations, training, and IT operations. The failure of the alarm subsystem is a significant business continuity
risk. The mitigation of that risk could have included

• automatic notification of grid controllers and IT system operations of a subsystem failure

• incorporation of multiple restart options for the alarm service in the design. The only restart available
assumed the validity of the data queued for processing by the alarm system. Are there alternatives that
would provide partial functionality for the grid controllers?

This example reflects a failure with service availability. The task force final report noted that none of the
events leading to blackout had malicious intent. But the failure also demonstrates the sensitivity of the power
grid’s SoS to data integrity (MISO’s state estimator) and the effects of a software failure on an essential
system service (the alarm system race condition). Attackers, particularly those with some inside knowledge,
might be able to stress the system with multiple independent external “accidents.”

The monitoring of the grid requires that organizations like MISO have knowledge of the loading and
available capacity of a utility. MISO has to recommend actions based on its confidence in the utility
data feeds. That same information would be valuable to a utility’s competitors, since it might give them
an advantage in pricing electricity. These confidentiality and integrity requirements involve multiple
organizations. A utility has to have confidence that MISO protects the information and uses it appropriately
without the ability to monitor MISO’s IT operations.

Consolidating Aspects of Security with General Failure Management

The Introduction to System Strategies19 article notes that the multiplicity of systems and increasing number
of possible error states arising from system interactions can overwhelm security and reliability analysis.
Separating the analysis for reliability, dependability, and security may compound the complexity. With
respect to the power grid blackout, the mitigation for the alarm subsystem failure would have to have been
chosen without knowledge of the actual cause of the failure. The use of only server redundancy suggested
that the analysis concentrated on hardware failures.

19. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/883-BSI.html (Introduction to System Strategies)
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The use of a second server consolidates the management of hardware failures. It does not matter if the failure
was with a power supply or with memory. In either case the mitigation replaced the entire unit.

The consolidation of failure mitigations is a necessity for software also. The immediate diagnosis of a cause
may be impossible, and the choice of mitigations is based initially on the effects. Threats, vulnerabilities,
unexpected events, and changes of practice—for processes, people and technology—can have similar effects
on business continuity. With respect to security, intrusion detection components may be able to identify
an attack directed at a specific system. Intrusion detection is less effective when the effects are indirect,
such as an attack that compromises a normally trusted data source. The effects of an indirect intrusion are
often indistinguishable from the effects of a user or software error on that remote system. For example, was
the failure of the alarm server in the power grid example caused by an internal failure (race condition in
this instance), by extremely high volumes of data, or by corrupted data? Was a high volume of data or a
corrupted data stream caused by external system or sensor failures, by malicious activity, or by a significant
number of actual events?

The analysis of alarm service failures for the power grid might have considered causes of the server failures:

• Hardware failure and some software errors – Mitigate with a redundant server, which covers server
hardware failures as well as some server software errors.

• Input data stream errors – Multiple mitigations: (1) Restart server without using the saved data queue.
The data had been processed by other subsystems. Can the alarms be generated by analysis of the
existing power grid state information? (2) Have a separate subsystem monitor and store the last N hours
of the input stream, which can then be replayed.

• Poor diagnostic support for system management – The data stream from the external monitors to the
control system appeared to be syntactically correct because that data was processed without errors by
other subsystems. That information would suggest the possibility of an error in the queued data used
to restart the redundant server. IT operations require guidance on how to interpret such events so as to
support recovery.

Failure Analysis Using Scenarios—Describing Stresses
Because identifying vulnerabilities associated with system interactions is difficult (as noted by Leveson and
in the quote from Trust in Cyberspace), it is essential that subsystems and components are as vulnerability
free as possible. Integration may depend on the ability to tailor components or subsystems. The analysis

of any such extensibility or configuration mechanisms should have high priority. Web services 20 are an
example of mechanisms that can tailor the interface among systems.

System failure analysis should be part of overall risk analysis activities. An essential metric for this analysis
is maintaining the traceability to business operations. That traceability can be used in cost-benefit analysis
for establishing failure priorities and selection of mitigations.

The initial analysis identifies potential adverse system and operational stresses rather than explicit
vulnerabilities. For example, in terms of availability, which kinds of failures could disrupt business
operations? For the power grid example, such analysis should have identified the alarm system. The stresses
should include those that may arise for the operational administration of the system.

The mitigation of system failures should consider the role of users and system administrative staff. For
example, multisystem identity management may be required to meet authorization requirements, but such
a security service also means that the effects of an operator error propagate to multiple systems. Increased
dependencies among systems also means that it may be more difficult for an operator to know the effects of
any actions taken in response to a system failure. An inappropriate operator response may induce additional
failures that could be exploited.

Fault events, affects, and responses can be described by scenarios. Scenarios provide a way to document
failures and structure the necessary analysis.

20. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/assembly/639-BSI.html (Security Concepts, Challenges, and Design
Considerations for Web Services Integration)
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Scenario Components
The components of a general scenario are

• a stimulus: a condition or event that needs to be considered when it arrives at a system

• a source of stimulus: the entity that generated the stimulus

• an environment: the conditions under which the stimulus occurs, such as during high usage

• the affected artifacts: Examples of artifacts include data stores, services, and software monitoring
sensors.

• response: the activity undertaken after the arrival of the stimulus

• response measure: the attribute-specific constraint that must be satisfied by the response

• a set of architectural tactics: the architectural tactics that could be used to achieve the desired
response

We need to define some terms.

Failure: Occurs when the system does not deliver its expected service (as specified or desired). A failure is
externally observable.

Error: An internal state leading to failure if the system does not handle the situation correctly.

Fault: The cause of an error, which may lead to a failure.

For security, input that exceeds buffer size is a fault. The error is the violation of the pre-conditions for the
function that receives that input. A failure would be ignoring that error and permitting a buffer overflow that
was used to increase user privileges.  

The analysis of faults has to include the perspective

1. of a multisystem work process thread

2. of a system that contributes to the completion of a business work process

Scenario Guidance
Scenarios need to be sufficiently detailed to evaluate or refine a proposed system or software architecture.
Consider modifiability. Measuring the cost of change in terms of development effort could lead to a very
different approach than measuring the cost in terms of operational expenditures as downtime or installations.

The specificity of scenarios could also be a liability. A scenario examines a slice of a system. Evaluating a
lot of slices does not necessarily validate the whole. The scenarios should be representative of the spectrum
of desired behaviors. For qualities such as security and reliability, include scenarios that capture stresses for
essential business processes. Such scenarios provide traceability between technical decisions and business
usage.

Events

The kinds of events that can be analyzed depend on the visibility we have for the systems. An SoS
implementation of a business work process is a multistep activity. The composition of two of those steps
or a single step can be a source of faults. If the work process is considered as a transaction, what are the
events that could cause a transaction to fail? For a directed SoS such as a military command and control
system or an internal business SoS, knowledge of the internal systems and operating procedures can be
used to identify a significant number of system and operational failures that might lead to a failure of a
transaction that is associated with the work process. Where there is limited or no visibility for the supporting
systems, the “owner” of a business process has to be more pessimistic (or maybe that is more paranoid)
about expected behavior. In most instances, monitoring and logging activity is necessary to support analysis
after the occurrence of adverse events.

Having visibility into internal systems and operations is also a liability. An objective for loose coupling is
to avoid using knowledge of internal system structure so that an individual system can be changed without
affecting system integration. Using knowledge of internal systems for failure management could limit the
ability to make future changes.
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Designers for systems that have dependencies on external systems could consider events such as

• events unanticipated in the initial design of the system interfaces. The analysis of interactions is rarely
complete, and over time, changes in usage, software, and system management can introduce new
behavior.

• events that challenge the trust assumed among systems. A challenging aspect of designing for multiple
systems is specifying the trust among the parties. The trust might be reflected in the confidence that
the suppliers of services will not exploit that contract, the confidence that the systems can perform
the required action correctly and in the allotted time, or the confidence that a system has not been
compromised. The trust associated with a particular party or system is dynamic. Events such as delayed
responses, errors associated with data exchanges, or reports of internal processing errors could suggest
that the trustworthiness of that service should be reviewed.

Designers for systems that support a multiple system work process could consider events such as

• violations of any preconditions for initiating a service request

• input data not meeting specifications

• invalid authentication or authorizations. These might be failures in a web service protocol.

• frequency of usage

• errors that arise completing the requested service

• - Are existing error recovery procedures consistent with those expected by external usage?

• - Are there failure states that now require operator intervention?

• system usage patterns that differ from “normal” usage

• - resource contention

• - reduced capability to meet local service demand for service

• - high priority external requests

• - risks for system managed assets

Responses and response measures

Response objectives include prevention, containment of effects, restoration of the system state to time
in advance of the event, and corrective changes in the existing system state. Response measures include
cost, effects on current usage, scope of recovery actions in terms of components affected, downtime, and
operational costs such as operator effort and training.

For multiple-system work process, there may also be requirements for undoing actions completed in the
steps preceding the failure. Hence a multisystem work process may create new recovery requirements
for individual systems. An SoS may support sufficient redundancy so that processing can continue. The
challenge is to have a set of scenarios that represent a sufficient spectrum of failures. Hardware failures are
typically one of the first ones to be considered. Software failures can be harder to predict. The probability
a specific software failure may be quite small, which can make it difficult to justify the analysis and
mitigation costs. But with the increased integration of business systems, the effects of an error can be
widely propagated. As noted by The Burton Group in a client report, an organization that had to deal with
a non-malicious denial-of-service event now requires all new applications to have detailed availability
requirements.

The evolutionary nature of an SoS generates a number of important secondary measures. The dynamics
associated with business processes are an ever present driver. The regulatory environment is changing,
as are the associated practices expected by auditors. The risk tolerance of an organization may change in
response to regulatory changes, contractual agreements, increased management awareness of the liabilities
associated with an activity, or simply the awareness of events that may affect an organization’s reputation.
The objective for design patterns such as service oriented architectures is to reduce costs and still enable
change by sharing business services among applications. Grady Booch, in a spring 2006 talk at the SEI,
noted that the half-life of architectures he was studying for his Architecture Handbook was around five
years. That rate of aging in systems probably reflects the continuing change in requirements. Whereas
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we can replace a single system when the gap between what it does and what it should do becomes too
great, replacing an SoS would normally be too expensive and too disruptive. Yet an SoS is subject to same
demands for change.

Organizations increasingly use flexibility as a way to provide resilience (e.g., business continuity) in
response to threats, vulnerabilities, unexpected events, or changes in business practices. Flexibility is
expensive, and the desired flexibility has to be carefully specified. For the business continuity example in

Introduction to System Strategies21, flexibility meant being able to easily change software so that if necessary
a geographical location could be run as a stand-alone operation or so that the software could be executed
at another location. Flexibility can be a security risk. An adaptable system may be changed in ways that
now violate the original security assumptions. Extensibility mechanisms such as mobile code and extensible
architectures can be exploited by attackers. Scenarios need to include the events that may arise because of
the flexibility mechanisms used.   

The error management software has to be analyzed for failures. The limited capability to monitor
multisystem activities suggests increased likelihood of false positive or negative responses. An essential
measure will be the ability to have predictable behavior in response to errors.

Finally, manageability should be a measure that is close to the top of the list. Error management may create
a dependency among users, system operators, and the software systems. That dependency has to be reflected
in change management and in configuration management. The most critical aspect of manageability may be
with daily operations. The dynamics of the SoS system interchanges and the ability to easily create a new
SoS work process thread complicates analyzing the cause of a system failure and identifying a recovery that
is appropriate for the existing usage. An SoS recovery that involves the recovery of multiple systems or a
failure in an automatic recovery can create a state that has not been previously observed by system operators.
Manual interventions to recover from a failed system state may not be aware of the multiple dependencies
among systems and create a configuration that is inconsistent with usage.

Environment

A scenario could be used to consider

• the criticality of the supported work process

• the context: a specific workflow, a class of users, a specific system configuration, or a specific
combination of activities

• the resources available for a response (these could be computing resources or personnel)

• regulatory or legal constraints such as Sarbanes-Oxley that require the consistent enforcement of access
and auditing policies across multiple systems

Characteristics of how systems were developed may influence how errors can be managed.

• commercial components: Commercial off-the-shelf software is designed for general usage. The risk
assessment would have been general and the priorities more influenced by the vendor’s reputational
risks than a specific user’s risks.

• multiparty developed system: General interoperability is not sufficient. Error management has to be
consistent. For example, a system whose response to an adverse event is a shutdown creates an event
(the loss of that service) that may not be well tolerated by all systems that use the provided service.

• multiparty cooperative systems: An architectural design for supporting business processes that involve
independently developed and administrated systems raises a number of problems. We no longer have
knowledge of the global system state. The systems do not necessarily share the same threat profile or
risk analysis. A similar set of conditions could exist for loosely coupled internal systems where the
global system knowledge may be theoretically possible but impractical to maintain. A response may
have to be chosen with incomplete knowledge about the global state, including the cause of the event,
with the increased likelihood of false positives and negatives. We may have inconsistent behavior as
independent systems respond to the same event based on differing local knowledge and threat profiles.

21. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/883-BSI.html (Introduction to System Strategies)
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• shared services: Distributed but shared infrastructure services may have multiple “owners” for each
instance of a service and multiple points of control. Such an infrastructure has its own a set of threats
and may be used by applications that do not share common threat and risk profiles.

Tactics

The limited experience with systems of systems and the diversity of such systems means that we have a
scarcity of proven tactics. Advice is more often available on what not to do.

For example, it is not unusual to observe that early prototypes of web service applications used SSL for
confidentiality. SSL is a point-to-point solution and not appropriate from an end-to-end perspective, since
a transaction supported by web services may involve multiple hosts. The prototypes should have used the
capabilities provided by web services that were designed for end-to-end processing. The content of a web
service message may be dominated by headers rather than data, but those headers have to describe how
to manage data access and authentication across one or more sites. A similar technique can be used for an
SoS. We could implement a quality of service attribute by labeling data. Such labeling might also provide
guidance for error management.

Berg’s High Assurance Design: Architecting Secure and Reliable Applications is a source of tactics [Berg

0622]. That text has chapters on trust, compositional and transactional integrity, and failure response design
and a manageability case study.

Today, loose coupling is often promoted as a means to enable interoperability across diverse platforms, but
loose coupling is an essential tactic for maintaining system resilience. Errors in tightly coupled systems with
synchronous communications are more difficult to mitigate and hence more likely to lead to a failure. Table

1 lists some of the differences between loose and tight system couplings [Perrow 9923]. Error management
should avoid techniques that would increase the coupling among systems.

Table 1. Differences between tight and loose system couplings

Tight Coupling Loose Coupling

Delays in processing not possible Processing delays possible

Invariant sequences Order of sequences can be changed

Only one method to achieve goal Alternate methods available

Little slack possible in supplies, equipment, and
personnel

Slack in resources possible

Buffers and redundancies are designed in, deliberate Buffers and redundancies are fortuitously available

Substitutions of supplies, equipment, and personnel
are limited and designed in.

Substitutions are fortuitously available

The evolutionary character of an SoS influences tactics. The choice of tactics should consider future usage.
Under what circumstances might that tactic have to be revised or replaced? The demand for change will
come both from the participating systems and from changes in the usage of an SoS.

The mitigation tactics for systems that participate in an SoS, particularly for an SoS that crosses
organizational boundaries, may need to have a defensive perspective because of the limited visibility that
exists for other participants and of the state of the SoS. Each system should have sufficient autonomy so that
its own assets can be protected, but that autonomy may create conflicts between the objectives of a specific
system and the SoS. Events that lead to the defensive operational mode for multiple systems could generate
an SoS deadlock that requires operational procedures to resolve. The SoS scenarios should consider faults
that might lead to deadlocks.

22. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_berg06 (System
Strategies References)

23. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_perrow99 (System
Strategies References)

http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_berg06
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_berg06
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_perrow99


Scale: System Development Challenges 17
ID: 882-BSI | Version: 10 | Date: 5/16/08 2:39:02 PM

Composing system analysis

Although aircraft control systems are not networked in the manner being considered in this article, the effects
of requirement changes for avionic systems on certification raise some of the problems that now confront the
software architect for a networked system. The material in this subsection is drawn from an article by John

Rushby [Rushby 200225]. While Rushby’s approach has a research perspective and may not be immediately
practical, his reasoning can be instructive for the practitioner.

The certification of avionic systems involves not only verifying that such systems work correctly but also
showing that such systems cannot go badly wrong even when other things break. Aircraft have been certified
as a whole. Components are certified only for their application for a specific aircraft. Software on board
commercial aircraft has traditionally used federated architectures. Separate computer systems were used to
implement functions such as such as the autopilot, flight management, or yaw damping, with redundancy
done for each system. The limited interaction and the few shared resources among the separate systems
served as a barrier to the propagation of faults and enabled essentially independent certification of each
component. The duplication of resources is expensive, however, and the limited interaction among the
modules could also limit the functionality that could be provided. Hence there is a move toward integrated
and modular architectures in which several functions share a computing resource or where the functions can
be composed from smaller components that could be used in different applications.

Rushby notes that we do construct systems from components by reasoning about the properties of the
components and interactions among the interfaces. But with traditional design, we are reasoning about
normal behavior. Certification has to deal with abnormal operation. How does the malfunction of a
component affect the larger system? Unfortunately, the hazards may not respect the boundaries that were
defined for normal operation. For example, the requirements for aircraft tires for normal operation can
be derived from the knowledge of the aircraft in terms of weight, landing speed, and length and from
thermodynamics in terms of modeling the heat buildup. On the other hand, a tire failure can create new
interfaces among aircraft components because tire fragments can puncture a fuel tank.

Rushby explores how we might certify individual components so that modular certifications could be
composed to form a system certification. While certification may be a requirement for only a few systems,
his approach may suggest ways to reason about the behavior of complex systems during abnormal
conditions. The approach has three key elements.

• partitioning

• assume-guarantee reasoning

• separation of properties into normal and abnormal

The objective for partitioning is to avoid effects that are outside the defined interface by protecting the
computational and communications environment perceived by non-faulty components. Assume-guarantee
reasoning is the technique that allows one component to be verified in the presence of assumptions about
another, and vice versa. Rushby extends the technique to consider abnormal properties. How does a
component behave when components that it interacts with fail in some manner? Given a particular set of
fault assumptions, can a component guarantee a specific level of service? The analysis needs to deal with
the domino effect. If some set of faults reduces component A guaranteed service from level 1 to 2, then that
change may lead to a reduction in the level guaranteed by component B. We have a domino effect if the latter
reduction leads to a further reduction in the guaranteed service level for A.

Concluding Observations

Need to Know
This article has discussed the importance of understanding the effects of the increasingly complex operating
environment on system architecture. We have not discussed how widespread that knowledge has to be in
the architecture. For example, an early strategy for distributed computing was to hide the networking faults

25. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_rushby83 (System
Strategies References)
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from the application developer. The computing infrastructure can provide a generic response to faults, but
usually only the end-points of a transaction are able to initiate a response that addresses the criticality of a
function and how the specific fault affects that functionality. The organization that had a self-inflicted denial
of service added reliability requirements to the applications, the end points.

The need to know has to be balanced against maintenance costs. The operating environment, the business
requirements, and the business and technical guidelines for responses to high-risk events will change. A
frequently applied architectural tactic is to encapsulate the aspects of a design that are subject to continued
change. Another approach is to bind such choices as late as possible in the development process so that
they can be more easily changed. The organization that implemented the business continuity example in

Introduction to System Strategies26 used the latter approach.

Monitoring
As the operating environment becomes less predictable, we need to continually monitor for abnormal
behavior and provide appropriate diagnostics. The initial objective is not to support a real-time response or
to share that information across systems. Rather, the later analysis of such data may observe the increasing
frequency of conditions that had not been anticipated or support the analysis of a system after a failure.
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